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Extension of the Measure-Free Approach Here 0 denotes the zero element of the lattice, and fl
to Conditioning of Fuzzy Sets and denotes the unit element. For a, b e S, ab = up{r. E

Other Logics Sxi<a, and z.<b) andavb=inf{xESlz>a
and z > b}.

by Semi-Boolean algebras differ from Boolean alge.
Dr. I.R. Goodman bras, [8], in that we do not require;

1. R G- 1 =, or
Code 421 (S), NOSC, San Diego, CA 92152 2. z' V z = S1.

Note that Zadeh's fuzzy sets and Boolean algebras are
and semi-Boolean algebras. Furthermore, observe that the

Dr. D. W. Stein inequality is compatible with the operations. Namely:
a<b 4 a=a-b 4== b=aVb

Code 7601 (T), NOSC, San Diego, CA 92152 Definition 2. Let S be a semi-Boolean algebra,
and let a, b E S. The condutional object (aib) is defined

Abstract by d~f

Drs. Goodman and Nguyen define conditionini; (a1b) = {x E S I b = a . b}.
in a probabilistic setting [2]-[5]. The conditional ever,. Furthermore:
algebra, which they associate to a Boolean algebra, al., d
lows one to consider conditional probabilities as event:;, (SIS) = {(alb)la, b E S) C *P(S).
and not just as measures. This facilitates combining; We use the following notation. Leta,b E S. Re.
conditional events with different antecedents, which cl use the rl ati o.Let b with
is important in solving data fusion problems [6]. It call, [8, that the relative psuedo-complement of b with
the present wo'rk we develop conditioning in a more respect to a, denoted here by bra, is sup{z E S I z'b <

general algebraic context which includes Boolean al. a}. One readily shows that b ig (a • b) = iup{e r S I
gebras and Zadeh's fuzzy set theory. Our structur,, z.b = a.b]. Additionally, we single out closed intervals
roughly speaking, has the properties cf a Boolean al. of events: [a,b] = {z E S Ia < < b}.
gebra except for the law of excluded middle. Usin; Let X and Y be sets and let f : X - Y be an
functional image extension, the principle used to defir arbitrary function. Let P(X) denote the power class
the operations in [2]-[5), we define disjuntion, conjunc- of X. Using the functional image extension, we define
tion, and complement operations on the conditional a map f : P(X) -. P(Y). Precisely, if A E (X),
objects. Unlike the probability case, closure problem; then f(A) d_( I z E A). Among extensions,

*, arise. They are handled by extending the set of con- g ((X) -. P(Y), of f satisfying: if A C B then
ditional objects. We define a semantic evaluation on g(A) C g(B), f is minimal, i.e. for all A E P(X)
the extended set which, when applied to Boolean alge- f'(A) C g(A).
bras, yields the familiar conditional probability evalu- Theorem 1. Let S be a semi-Boolean algebra and
ations and which associates to each conditional fuzzy let a,b E S. Then:
set a fuzzy set membership function. L. Zadeh [10],
E. lisdall 71, and H. Nguyen [9] have also studied (aib) = (a, bib) = [a b,bto (a. b)]. (1)

conditional fuzzy set membership functions. Consequently, without loss of generality, one may

1. Basic Syntactic Properties assume that, in the expression (alb), a < b. Further-
more,

In this section we define conditioning for semi-
Boolean algebras, and we define algebraic operation (alb) = (cid) a.b = c.d and bt(a.b) = do (cd),
on the set of conditional events. We obtain formu- and
Ins for these operations when we restrict attention to
Boolean algebras or Zadeh's fuzzy subsets. = [a. f (a. fl)] = (a).

Theorem 2. Let S be a semi-Boolean algebra,
Definition 1. A semi-Boolean algebra is a com- and suppose f , S" - S is a surjective function. For

plete bounded distributive lattice, (3, <, 0. 0), with an = I...,, n and a. b ESdefine:
involutive operator, ()', such that:

1. De.Morgan's laws hold. dof

2 0'=Q = f (at bl.. a b.),

n3 , ifinitly distributive over V and

.. oodman and 510n , p?
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J de f(b1  (a• b1).... ,bn r a,.bn)). Corollary 2. Suppose S is Zadeh's fuzzy subset
system. Then for all a, b, c, d E S :

If f is nondecreasing with respect to 5, then: bi(a b) a'bV60 bb. (10)
D(a b() - ab V cdab. V(10)6&,

f((aiJb1),...,(a.Jb.)) = [a,O], (2) (aab)V(cld) = (abVcdab VcdV6'obb 6cd,d) " (11)
(alb) . (cld) = (abcd, (ab V 6 ab,b) . (cd V 6cd,d)].(12)

and if f is nonincreasing with respect to <, then: (alb)' [(ab V 6,b,b)",(ab)']

= [(ab)'. 6abb (ab)']. (13)f((atlb1), ... , ((a,,Jb,)) = [p,a)r. (3)a

For each I : j _ n let aj, bj E S and without loss
Corollary 1. Suppose S is a serni-Boolean alge- of generality assume that aj :_ bj. The n-argument

bra. Then, using functional image extension, ., V, and extensions for. and V of corollary 2 are:
0' extend to P(3)2. For all a, b, c, d E S:

(a, Jbi) V ... V (an Ibn)
(alb) V(cld)= [abVcd, bt(a.b) Vd>(c.d)]. (4) =(a, V...VaIlai V...Van

V6.0 .. O); (14)
(alb) ' (cid) = [ab ' cd, (b c (a b)) (dc. (c . d))]. (5) and

If 0' is nonincreasing, then: (at bi) .. (an Ib)

(aIb)' = ((b > (a . b))',(a . b)']. (6) =(at "a,'(at V ° "(a, V'6°"b.)]" (15)

The partial ordering on a semi-Boolean algebra S
In jeneral, the operations are not closed i.e., given extends to the set of conditional events (SIS). Define:

a, b, c, d E S there may not exist a and y such that:

(alb) < (cid) ' (alb) = (alb)- (c'd),
a.bVc.d<a; a.b.e.d< 7 , Then

(bt.(a.b))V(cd, (c.d)y= a o(a.bvc.d), or (aib) <(cid) (eld) (cld)v(alb).
(bia ).(c(~)= t,(.b.c.d).

Theorem 4. Let S be the semi-Boolean algebra
* However closure does hold when S is a Boolean al- of fuzzy sets, and let a, b, c, d, E S. (alb) 5 (cid) if and
. gebra, see (5] and theorem 3 below. The closure of only if:

the operations and the identification of the results as a• b C /,
conditional objects are easier to obtain in the present and
context then in that of [5]. br, (a 5) . > (c d).

Theorem 3. ((2], theorem 3.1, or [5], section 3.3)
Let S be a lQlean algebra and let a, b, c, d E S The proofs of our ;,,sults use the foilowing cm-

rnas.
(afl) V (cad) = (ab V cdfab V cd V bd) Lemma 1. Let S be a semi-Boolean algebra. .

= (ab V cdfab V cd V a'bc'd); (7) C S. and a < b.

(aIb) . (cd) = (abcdla'b V c'd V bd) (1.) b. (b t, a) = a.
= (abcdja'b V c'dV abcd); (8) (2.) a < bD.a.

(alb)' = (a'lb). (9) (3.) b < (b , a) .

If S i., the set of Zadeh's fuzzy subsets, with the
, operations mii,, max and I - ), . is a semi-Boolean Lemma 2. The equation, ,, =. h,is .i soIition

algebra, e [1]., (SIS) is not closed ,inder the opera- if and only if (b a) a Li.

tions ano ()', however it is closed under V For fuzzy Definition 3. The semi-Boolean algebra. S h:.
siibtets a and b of a set X, we deline the fuzzy sJbs, the surlective psuedoinverse property if for all, .h S
6 & by a = b, has a solution, or equivalently. (bt a ra .a

f if (I(X) = hfz) for z ' X. 2. Conditional Event and Closed Interval Alge-
* \n" otherwis. broim and Semantic Evnlutinn



W(: define the closed interval a:.ebra, T(S), of Definition 4. For real numbers 0 -5 A1  A2  1,
semi-13olean algebra S. If S is a Boolean algebr define the conditional number (A, IA2) = sup{A I 0 <
then I(S) = (31.), while if S is ' -ideh's fuzzy sel A < 1, and O(A,A 2) = At.
system, I(S) is the closure of (SIS) inder the abow Definition 5. If 1111 is any model for S, and if
mentioned operations, For an arbitrary semi-Boolear a < c E S, define:
algebra S and compatible t-norm, we define a semantih
evaluation on T(S). For Boolean algebras this yield,,, IIa,c I- (I1aIIIIc toi).
the usual conditional probability, and it associates to
each closed interval of fuzzy sets a fuzzy set member Theorem 8. Let S be a Boolean algebra,
ship function. Finally, we compare the closed interva S -- [0, 1] a finitely additive probability measure, and
approximation and the best-upper approximation o 7: [0, 1]2 -- [0, 1] multiplication. Then, assuming a <
composites of conditional fuzzy sets. b,

Wc iingle out certain subsets of P(S) for an arbi.. 11(aib)I = Ii[a, b c-a]JI
trary serni-Boolean algebra S. f Ilal/IIbI, if jjbjl > 0

- 0, otherwise
I(S) J= {[a,c]l a 5 e E S); Theorem 9. Let S be Zadeh's fuzzy set system,

d(S) V {[b,0] 1 b r, S) with 1hail the fuzzy set membership function era E S,and =in.

KC() frd {{ I d E S). 1. For all 0 < At A2 < 1,

M (S) d= (aI b). (cd) I a,b,c,d, C S). (AtIA 2) = max(Al,6A,,A2).

C(SIS) is the finite closure of (SIS) under the opera- 2.
tions ., V, and a'., C1l m a(lall,

Theorem 5. Let S be a Boolean algebra.
1. For all a, c E S, the equation zxa = c las a unique 3.

solution. II(alb)ll = max((jaiI, 6' l.,1jlbil).
2. (31S) = Z(S). Thus, theorem 9 shows that definition 5 is reason-

Theorem 6. Let S be Zadeh's fuzzy uet system. able, as it reduces to the usual conditional probability
1. The equation, zr a = c, has a solution tf and only evaluation for Boolean algebras. It provides for seman-

if: tic evaluation of any'Boolean combination of Zadeh's
a. a = c < f2 fuzzy set conditional events, or any operation yield-
). b. a < C = Q, or ing closed intervals. We compare the above technique

a =c = with the optimal upper approximation introduced in
* 2. (5] section 6.

S C (S IS) Definition 6. Let S be a semi-Boolean algebra,
= J(S) U K(S) and let A C S. The opimal upper approzimaiion of A

( ~ with respect to (SIS) is
C (S)
C P(S). cond(A) = f{(ab) I A C (alb),a,b E S).

Theorem 7. Let S be Zadeh's fuzzy set systemFAT he. For A C S let:
Then

C(SIS) M(S) "cl " CA
• " -= (s). .(A) E= .{xIEA); V(A) = V{zIE A).

With theorem 7 established, it is clcar !.hat s- Theorem 10. Suppose S is a semi-Boolean alge-
mantic evaluations for any Boolean operations acting bra.

upon conditional events can be carried out, prvided
wuch evaluations are well defined upon all closed inter. (i.) cond(A) = cond([.(A),V(A)J)
vals of events. Let S be a semi-Boolean algebra, and (ii.) cond(fa, hi) = a, (b e a) o a].
let 0 be a compatible t-norm. For Boolean algebra. = (alb , a)
we take 0 to be multiplication, and for Zadeh'i4 fuzzy
sets we take b to be rain. Theorem 11.

Goodnasn ond Stein , p. TIO
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1. If S -posesses the surjective psuedoinverse prop- of unconditional events with a relative psuedocomple-
erty, then for all a < b E S meat relation connecting the endpoints. This allows

for ease of computing the functional image extension of
cond(a, b] = [a, b] any conditional object, and yields almost the same al-

= (alb D a). gebraic properties as for the underlying unconditional
objects. Unlike the Boolean case, Zadeh's system pro-

2. If S is an arbitrary semi-Boolean algebra, then: duces closure problens for the extension of. - ,,d (0.
This difficulty is addressed by utilizing the optimal up-

Ill(a, b]ll = Illcodta, b]l. per approximation technique.

Theorem 12. Suppose S is Zadeh's fuzzy subset Finally, one could question the present develop-
terAssume, without lost of generality, that a < ment of conditioning, which extends the syntactic ap-system. S i E oSsfor Ien iy hat a < proach to conditioning in probability previously devel-

with 6.,b. Furthermore, let T = (j I al < bj } and oped by one of the authors, as opposed to the much

T,, = Ij I ai = bj}. Then: simpler material implication. If the basic analogue be-
tween conditioning in probability and that for other

cond((alb)') = (a' . ,16., V kn). (16) logical systems is to be kept, one cannot utilize mate-
rial implication, and one is forced to go in the more
syntactic direction as provided here. Future efforts will
address this and related issues.
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